If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17j^2+5j=0
a = 17; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·17·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*17}=\frac{-10}{34} =-5/17 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*17}=\frac{0}{34} =0 $
| 10p^2+13p-3=0 | | (15-2p)=(7p-3) | | 6.7(x-1)=0.3x+49.3 | | 2(5x+2)=-5(2x-1) | | F(x)=x³-4x³ | | 1/2x45x18=405 | | 0=50-16t^2 | | 4g^2+16g-9=0 | | 1/2x12x12=36 | | 1,6(7-5x)+4(2-0,4x)=0 | | 2u=-10 | | 1/2x8x8=32 | | 13t^2+6t=0 | | 4(1y+-2)=0 | | -6(2x+1)=-42-3x | | 63-5x=38 | | 4x-11=10x-19 | | -1.3x=78 | | 8x-12=3x+27 | | x+1.2=3.8 | | 4*3x+5=1 | | 6/8=x/5 | | 9-4x*3=4 | | 5+3(3-2x)=4x+2(10-3x) | | 0+16x=-80 | | -1.4x=1.386 | | 1/5x-10=2 | | F(x)=2(x+7)(x-3) | | X+4-x=4+12x | | 1/5x-12=3 | | 7.2x-4.5=38.7 | | 5x+2x-3=13 |